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Chaotic attractors with toroidal topology �van der Pol attractor� have counterparts with symmetry that
exhibit unfamiliar phenomena. We investigate double covers of toroidal attractors, discuss changes in their
morphology under correlated peeling bifurcations, describe their topological structures and the changes under-
gone as a symmetry axis crosses the original attractor, and indicate how the symbol name of a trajectory in the
original lifts to one in the cover. Covering orbits are described using a powerful synthesis of kneading theory
with refinements of the circle map. These methods are applied to a simple version of the van der Pol oscillator.
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I. INTRODUCTION

It has been known for some time that discrete symmetry
groups can be used to relate chaotic attractors with different
global topological structures �1–4�. By different �or distinct�
topological structures we mean there is no smooth deforma-
tion of the phase space that can be used to transform one
attractor into the other in a smooth way. If a chaotic attractor
has a discrete symmetry, points in the attractor that are
mapped into each other under the discrete symmetry can be
identified with a single point in an “image” attractor. The
identifications are through local diffeomorphisms. The origi-
nal symmetric attractor and its image are not globally topo-
logically equivalent. This process can be run in reverse. A
chaotic attractor without symmetry can be “lifted” to a cov-
ering attractor with a discrete symmetry following algorith-
mic procedures �1–5�.

A simple example illustrates these ideas. The Lorenz at-
tractor �6� obtained with standard control parameter values
exhibits a twofold symmetry. The symmetry is generated by
rotations about the Z axis through � radians: RZ���. We mod
out this twofold symmetry by identifying pairs of points
�X ,Y ,Z� and �−X ,−Y ,Z� in the symmetric attractor with a
single point �u ,v ,w�= �X2−Y2 ,2XY ,Z� in the image attrac-
tor. This results in a chaotic attractor that is not topologically
equivalent to the original attractor. Rather, it is topologically
equivalent �not diffeomorphic �1,2,4�� with the Rössler at-
tractor �7�. Similarly, the Rössler attractor can be lifted to a
twofold covering attractor that is topologically equivalent to
the Lorenz attractor. The lift is carried out by inverting the
2→1 local diffeomorphism used to generate the image:

�u ,v ,w�→�X= ±�1
2 �r+u� ,Y = ±�1

2 �r−u� ,Z=w�, where r
=�u2+v2=X2+Y2. This modding out process is illustrated in
Fig. 1.

A single image attractor can have many topologically in-
equivalent covers, all with the same symmetry group. These
covers are differentiated by an index �3–5�. The index has
interpretations at the topological, algebraic, and group theo-
retical levels. Briefly, the index describes how the singular
set of the local diffeomorphism relating cover and image
attractors is situated with respect to the image attractor. Dif-
ferent lifts of the Rössler attractor, all with RZ��� symmetry
but with different indices, are obtained if the twofold rotation

axis passes through the hole in the middle of the Rössler
attractor, passes through the attractor itself, or passes outside
both the attractor and the hole in the middle �cf. Fig. 2�. The
transition of the symmetry axis through the attractor is re-
sponsible for peeling bifurcations �2�.

Rössler-type attractors have been lifted to covers with
many symmetry groups �5�. Whenever the singular set of the
symmetry group involves a rotation axis, this axis has passed
through the attractor at most once in all previous studies.

FIG. 1. The Lorenz attractor �a� can be mapped to a Rössler-
type attractor �b� by identifying points related by rotation symmetry
about the Z axis. This process is reversible: Rössler-type attractors
can be “lifted” to Lorenz-type attractors.
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More precisely, it has passed through the branched manifold
�8–11� describing the attractor at a single point.

There have been no studies of covering attractors that are
obtained when the rotation axis intersects the image attractor
in more than one spot. Generically, a rotation axis must in-
tersect a toroidal attractor an even number of times. In the
present work we look at twofold covers of toroidal attractors
with rotation symmetry. We use methods similar to those
used in �1–5�. Many of our results depend on a powerful

synthesis of kneading theory with refinements of the circle
map.

In Sec. VI below we study peeling bifurcations for
rotation-symmetric lifts of a chaotic attractor generated by
the van der Pol equations subject to a periodic drive. The
phase space of this attractor is a “hollow donut” or “fat tire,”
that is, the direct product of an annulus with a circle: A2

�S1. An annulus itself is a circle with a thick circumference:
A2=S1� I, where I is an interval, or short segment of the real
line. The branched manifold that describes this attractor is
essentially a torus �thin tire�. A rotation axis used to construct
symmetric lifts must intersect the torus an even number of
times. Lifts of laminar and chaotic flows on a torus are dis-
cussed in Secs. IV and V, respectively. The first of these
sections describes how the symbolic dynamics of image tra-
jectories lift to symbolic dynamics in covering trajectories.
The second describes how the branched manifold describing
the image attractor lifts to the branched manifold describing
the covering attractor. We prepare for these discussions by
introducing toroidal coordinates and describing flows on a
torus in Sec. III. We begin this entire odyssey in Sec. II with
a review of peeling bifurcations and their properties. Our
results are summarized in Sec. VII.

II. REVIEW OF PEELING BIFURCATIONS

Peeling bifurcations arise naturally when considering cov-
ers of chaotic attractors. They describe the bifurcations these
covers can undergo as the relative position of the image at-
tractor and the symmetry axis changes. Peeling bifurcations
have been described in some detail for covers of the Rössler
dynamical system in �2,4�.

We briefly describe the basic idea for double covers with
RZ��� symmetry about a rotation axis R with the usual
saddle-type symmetry. Lift an image attractor �Fig. 2�a�� to a
double cover with R far away from the original image at-
tractor. The double cover consists of two identical copies of
the original image attractor. They are disconnected. An initial
condition in one will evolve on that attractor for all future
times in the absence of noise. As the rotation axis R ap-
proaches the image the two disjoint components of the
double cover approach each other, keeping R between them.
At some point R will intersect the attractor. When this oc-
curs the rotation axis will split the outer edge of the flow
from one of the two components of the cover and send it to
the other component, and vice versa. The two attractors in
the cover are no longer disconnected �Fig. 2�b��. As the ro-
tation axis R moves deeper to the center of the image attrac-
tor �towards the center of rotation of the Rössler attractor, for
example�, the double cover becomes smaller in spatial ex-
tent. Finally, the rotation axis R may stop intersecting the
image by passing into the hole in the middle �Fig. 2�c��.

The peeling bifurcation takes place as the rotation axis
moves from the outside to the inside of the image attractor.
The image attractor itself is not affected. All bifurcations
take place in the cover. Before intersections begin and after
they end the double covers are structurally stable and topo-
logically inequivalent. During the intersection phase the
cover is structurally unstable because slight changes in the
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FIG. 2. �Color online� The Rössler attractor �a� can be lifted to
topologically distinct double covers with rotation symmetry by
placing the rotation axis in different positions: �b� in the attractor;
�c� in the hole in the middle of the attractor.
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position of the rotation axis produce profound changes in
lifts of trajectories from the image. That is, a trajectory re-
mains unchanged in the image while its lift�s� into the cover
change dramatically as the rotation axis R moves. Changes
in the shape, structure, and period of lifts of unstable peri-
odic orbits from the image into the cover are predictable.
These changes are summarized for covers of Rössler-type
attractors in Figs. 7–12 of Ref. �2�.

It may be useful to regard peeling bifurcations in terms of
how two trajectories in the cover that result from the lift of a
single trajectory in the image connect or reconnect as the
position of the symmetry axis changes. Roughly but accu-
rately, they can “turn back” into the subset of the attractor
from which they originated when the axis is outside the tra-
jectory, or else “cross over” into the complement of that
subset when the axis is inside the trajectory. This behavior is
reminiscent of what happens during the transition of a plane
through a saddle point on a surface, with the added feature of
“direction.” Since orbits are dense in a strange attractor, the
lifted system cannot be structurally stable during a peeling
bifurcation.

III. FLOWS ON A TORUS

It is useful to describe flows on a torus in terms of a
system of coordinates adapted to the torus: �� ,� ,r�. In such
a coordinate system � is the longitude; it increases with
time: d� /dt�0. The angle � is the meridional angle, mea-
sured from “the inside of the torus” �see Fig. 3�, and r mea-
sures the distance of a point in the annulus 0�r1�r�r2 at
constant angle � from the center line of the torus, a circle of
radius 	 in the x-y plane. The circle radius 	 must be suffi-
ciently large so that 	−r�0 for all points in the attractor.
Standard Cartesian coordinates are represented in terms of
these toroidal coordinates by

x = �	 − r cos ��cos � ,

y = �	 − r cos ��sin � ,

z = − r sin � . �1�

The Birman-Williams theorem �8–11� can be applied to
dissipative toroidal flows in R3 that generate strange attrac-
tors. The result is that the topology of the flow is described
by a branched manifold. The mechanism generating chaotic
behavior involves an even number of folds. The branch
“lines” are now circles. Since the flow occurs in a bounding
torus �12,13� of genus one, the Poincaré surface of section
consists of a single disk. The intersection of the branched
manifold with the disk �“branch line”� is topologically a

circle, S1. As a result, the flow can be investigated by study-
ing maps of the circle to itself �14�.

IV. LIFTS OF RIGID ROTATIONS

In order to determine the topological structure of a strange
attractor in R3 it is sufficient to determine the topological
structure of the branched manifold that describes it. This
remains true for covers of strange attractors with arbitrary
symmetry �4,5,8�. We do this in the following section.

In this section we prepare the groundwork by investigat-
ing how a rigid rotational �quasiperiodic� flow on a torus is
lifted to a double cover of the torus. This is easily done by
setting 	=2,r=1,�=
� in the toroidal coordinates. This
curve closes or does not close depending on whether 
 is
rational or irrational. The return map on a plane �=const is
shown in Fig. 4. It is �n+1=�n+� mod 2�.

Now pass a rotation axis through the torus as shown in
Fig. 5. The order-two rotation axis intersects the torus in an
interval I. If the rotation axis is parallel to the Z axis, the end
points of this interval are at �=2�� 1

2 ±��. The rotation sym-
metry lifts the torus into a structure inside a genus-three
bounding torus that is shown in Fig. 6. The location of the
rotation axis is indicated by ×.

Since the flow exists in a bounding torus of genus three
the global Poincaré surface of section has two components
�12,13�. In such cases the first return map consists of a 2
�2 array of maps �4,15�. For the Lorenz attractor such maps
indicate flows from branch line to branch line. In the present
case the return map indicates flows from the branch circles
on the left and right of Fig. 7. The return map for the cover
of the rigid rotational flow, in the case that the Z axis inter-
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FIG. 3. Coordinates adapted to an annular torus.
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FIG. 4. The return map for a rigid rotation is a straight line
mod 2�. � /2�=0.20.
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FIG. 5. The order-two rotation axis intersects the torus at
2�� 1

2 ±��.
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sects the image torus at �=�±2��, is presented in Fig. 8.
The angles parametrizing the branch circles on the left and
right run from zero to 2�. This figure shows that an initial
condition within 2�� of �=� on the left-hand-branch circle
maps to the right-hand-branch circle �see Fig. 8�a��, and vice
versa.

A symbol name for any trajectory on the covering flow is
easily constructed. Assume the return map in the image is
�n+1=�n+� mod 2�. Then �n=�0+n� mod 2�. Write out
this string of real numbers and replace each value �n by 1 if
�n� I, zero otherwise. This results in a string of symbols,
for example, 00000 11111 00000. . . for initial condition L.
Choose an initial condition L or R, for one side of the
cover or the other. Then repeat this letter following
symbol 0, conjugate this letter �L→R, R→L� following
symbol 1. This algorithm leads to 000001111100000. . .
→LLLLLRLRLRRRRRR . . . . A rotation-symmetric trajec-
tory has a conjugate sequence.

Depending on parameter values �e.g., 

��
1
4 � the sym-

bol sequence can consist of long strings of Ls, long strings of
Rs, and long strings of LRs, giving the appearance of pro-
longed rotation about three centers: one being the left-hand
torus in the lift, another being the right-hand torus in the lift,
and the third alternation about both in sequence when �n falls
in the interval I over a large range of successive interations.

As the rotation axis sweeps from the outside to the inside
of the torus, the value of � increases. The circular intervals
for which transition from one side to the other takes place
increases, with the return map becoming more and more off-
diagonal. As the Z axis approaches the inner part of the im-
age torus, the measure of � values that map to the same
branch circle decreases, and becomes zero when tangency
occurs ��=��. At this point the return map is completely
off-diagonal. This is an indication that the global Poincaré
surface of section is no longer the union of two disjoint
disks. A single disk suffices. This signals that the flow returns
to a flow of genus-one type, and the return map on the single
disk is �n+1=�n+2� mod 2� �notice the factor of 2�.

In the limit when the rotation axis is outside the torus
�“��0”� the double cover consists of two disconnected tori.
An initial condition in one torus remains forever in that
torus. In the limit when the rotation axis is in the hole in the
middle of the torus �“��

1
2”� the double cover consists of a

single torus. When the rotation axis goes through the origin
of Cartesian coordinates, the longitudinal angle � in the im-
age increases twice as fast as the longitudinal angle � in the
cover. Simulations of peeling bifurcations for double and
triple covers of laminar flows on a torus can be found in �16�.

V. LIFTS OF CHAOTIC ATTRACTORS

There is a class of strange attractors, such as the van der
Pol attractor that we discuss in the following section, whose
phase space is a hollow donut, topologically A2�S1, where
S1 describes the longitudinal �flow� direction. The intersec-
tion of the attractor with a constant phase plane �=const
occurs in an annulus A2=S1� I, where this S1 describes the
meridional direction and I is a small interval. Under the
Birman-Williams projection �10,11� the intersection of the
projected attractor with the plane �=const is topologically a
circle S1. The forward time map �→�+2� is therefore a

x

FIG. 6. When the order-two rotation axis intersects the torus at
2�� 1

2 ±��, the double cover consists of a structure with the topology
shown. This geometric structure exists inside a bounding torus of
genus three.

L R

X

FIG. 7. The laminar flow on a torus lifts to a flow on a manifold
with the complicated form shown. The rotation axis is indicated by
cross.

FIG. 8. Return map for a rigid flow contained within a genus-
three torus consists of mappings from two branch circles to
themselves.
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mapping of the circle to itself. As a result, many of the prop-
erties of this class of attractors are determined by the prop-
erties of the circle map. For example, the number and label-
ing of the branches of the attractor’s branched manifold are
determined by the appropriate circle map.

For simplicity we assume that three branches A, C, B
suffice to describe the branched manifold, and that the return
map on the singularity at which these branches are joined
�the branch circle� is a circle map �14� as follows:

�n+1 = �n + � + K sin �n mod 2� , �2�

with K�1. This map is shown in Fig. 9. Branch C is orien-
tation reversing. Its forward image extends over a range less
than 2� and its extent is delineated by the two critical points.
Branches A and B are orientation preserving and their for-
ward image extends over a range greater than 2�. They are
delineated by the critical points that bound C and the inflec-
tion point between them.

The return map for the double cover is obtained as in the
previous section. We begin by looking at intersections of the
rotation axis near the outside of the torus, at values �
=�±2��, with � small. The return map on the two branch
circles is as shown in Fig. 10 for �=0.15.

The return map for the double cover is obtained from the
return map for the image as follows. The vertical lines
through the maximum and the minimum and the vertical axis
at � /2�=0,1 in Fig. 9 separate the return map into three
branches A, B, C.

The two additional vertical lines separate branch C into
three branches: C2 which is the interval I: �−2������
+2��, and C1 and C3, which map L→L and R→R. Gener-
ally there are no degeneracies, so these five vertical lines
divide the circle into five angular intervals. In the present
case both endpoints of the interval I occur inside the
orientation-reversing branch C, so this branch is divided into
three parts: C1, C2, C3, as shown in Fig. 9. As a result, initial
conditions on branches A and B, and the adjacent parts of
branch C, namely, C1 and C3 of the circle on the left, map
back to that circle while initial conditions in the angular
interval C2 on the left circle map to the right-hand circle. The

branched manifold describing the covering flow has ten
branches with transitions summarized as follows:

L→L R→R L→R R→L

A A

C1 C1

C2 C2

C3 C3

B B

In the event that one �both� of the endpoints of the interval I
coincide with one �two� of the three points separating A, C, B
there are eight �six� branches.

Before the peeling bifurcation begins, when the two iden-
tical covers are well separated, each is characterized by a
branched manifold with three branches. At the end of the
peeling bifurcation, when the rotation axis R is inside
the image torus, there are 9=32 branches that can be
labeled �A ,C ,B� � �A ,C ,B�= �AA ,BA ,CA ,AB ,BB ,CB ,CA ,
CB ,CC� �2,3�. Branches labeled by an even number of let-
ters C are orientation preserving.

A periodic orbit in the image can be lifted to one or two
covering orbits. The symbol name of the covering orbit is
obtained from the symbol name of the image orbit and infor-
mation about the interval I. The name of the orbit in the
image is written out �e.g., ABBCBBAC� and refined accord-
ing to the location of the interval I �e.g., ABBC2BBAC3�.
An initial condition on the left or right �L or R� is given
and this is changed whenever a trajectory passes through
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FIG. 9. Circle map Eq. �2� for K=2.5, � /2�=0.2. The three
branches are conveniently labeled A, C, B.

FIG. 10. Return map for the double cover of the chaotic flow
whose return map is shown in Fig. 9. Parameter value: �=0.15.
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one of the branches defined by I. For example,
under this algorithm ABBCBBAC→ALBLBLC2LBLBLALC3L
ARBRBRC2RBRBRARC3R. A period-p orbit lifts to two period-
p orbits or one symmetric orbit of period 2p depending on
whether the image orbit maps through the interval I an even
or odd number of times. The algorithm for lifting orbits from
a toroidal flow to a double cover involves a synthesis of
kneading theory with refinement of the circle map due to the
intersection of the rotation axis with the image toroidal flow.

VI. APPLICATION TO THE VAN DER POL
ATTRACTOR

The Shaw version �17� of the periodically driven van der
Pol equations

u̇ = bv + �c − dv2�u ,

v̇ = − u + a sin��t� , �3�

produce a toroidal attractor for control parameter values
�a ,b ,c ,d ,��= �0.25,0.7,1.0,10.0,� /2� �4,9�. The phase
space for this attractor is the direct product of an annular disk
with a circle. One projection of this attractor is shown in Fig.
11.

The attractor is mapped into R3 following the prescription
x�t�= �	−u�t��cos��t� ,y�t�= �	−u�t��sin��t� ,z�t�=v�t�, with
	=1.2. This flow, embedded in R3, has the topology of a
hollow donut. A projection onto the x-y plane is shown in
Fig. 12.

The covers of the chaotic attractor produced by this em-
bedding into R3 undergo correlated peeling bifurcations as
the rotation axis slices through the image. In Fig. 13 we
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FIG. 11. Projections of the van der Pol attractor on the plane
u-v. Parameter values: �a ,b ,c ,d ,��= �0.25,0.7,1.0,10.0,� /2�.
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FIG. 12. Mapping of the van der Pol attractor into R3 using Eq.
�1� with 	=1.2.

FIG. 13. Double cover of the chaotic attractor solution of Eq. �3�
for the Shaw version of the van der Pol equations is mapped from
D2�S1 by a natural embedding. The center line of the torus is
mapped to a circle of radius 1.2 in the x-y plane. A correlated
peeling bifurcation occurs when the double cover is around the
twofold rotation axis through �x ,y�= �1.2,0.0�. The three images are
projections onto the X-Y, X-Z, and Y-Z planes, from top to bottom.
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show three projections of the double cover obtained when
the symmetry axis is parallel to the Z axis and has twofold
symmetry. The rotation axis passes through the point �x ,y�
= �1.20,0.0� in the x-y plane. The continuous version of this
correlated peeling bifurcation is available in �16�.

Both this attractor and the Lorenz attractor are contained
in genus-three bounding tori. The two attractors are topologi-
cally inequivalent. The X-Y projection of this attractor, which
is shown in Fig. 13�a�, is similar to the X-Y projection of the
Lorenz attractor. However, projections onto the other two
directions are totally different. The toroidal structure of the
present attractor is revealed in the projections shown in Figs.
13�b� and 13�c�. A Poincaré section of the double cover of
the van der Pol attractor �Fig. 14� shows the double annular
shape. The two components of the Poincaré surface of sec-
tion consist of two half planes, both with Y =0. One is hinged
on an axis parallel to the Z axis through �X ,Y�= �1.1,0�; the
other is the rotation image of the first. Intersections with Y

=0, Ẏ �0 are taken on one half-plane and intersections with

Y =0, Ẏ �0 are taken with the other. This Poincaré section
emphasizes the invariance of this attractor under rotation
symmetry around the Z axis.

VII. SUMMARY

It is remarkable that the global topology of the image
attractor imposes nontrivial constraints on its properties and
those of its covers. Specifically, an attractor whose phase
space is a hollow donut intersects a rotation axis an even
number of times �more precisely, its branched manifold
does�. Further, its branched manifold can have only an odd
number of branches. These remarkable properties extend, in
a suitable way, to double covers of these attractors.

Methods for constructing double covers of chaotic attrac-
tors have been applied to chaotic attractors of a toroidal na-
ture. These attractors are contained in genus-one bounding
tori and are described by branched manifolds with a circular
cross section on a Poincaré surface of section �9�. Their re-
turn maps are maps of the circle to itself. Their double covers
are created by correlated peeling bifurcations. The morphol-

ogy of the covering attractor changes systematically as the
rotation symmetry axis slices through the image torus from
outside to inside. Outside, the double cover consists of two
identical attractors, each contained in a genus-one torus. The
two genus-one tori are disconnected. When the rotation axis
intersects the image, the double cover is contained in a
genus-three torus, and is not structurally stable against per-
turbations of the position of the rotation axis. When the ro-
tation axis enters the hole in the torus, the double cover
exists in a genus-one torus. For various ranges of lift param-
eter values rotations can appear to occur around a single
center, two centers, or three centers. Lifts of periodic orbits
in the image attractor are described by a powerful synthesis
of kneading theory with refinements of the circle map.
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FIG. 14. Intersections of the double cover �Fig. 13� of the van
der Pol attractor with the two disconnected components of the
Poincaré section. The component on the right has Y =0, X� +1.1

with Ẏ �0 and the component on the left has Y =0, X�−1.1 with

Ẏ �0. The rotation symmetry is clear.
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